Observing System Simulation Experiments

Lars Peter Riishojgaard

Global Modeling and Assimilation Office and Joint Center for Satellite Data Assimilation

Overview

- What are OSSEs (and OSEs)?
 - What are they useful for?
 - How are they designed?
 - What is the origin (NWP)?
- Two example OSSEs
 - One already executed
 - One in the planning stages
- How can the concept be generalized?
 - Aerosol, atmospheric composition
 - Ocean
 - Land
 - Climate

OSEs

Observing System Experiments

- Typically aimed at assessing the impact of a given <u>existing</u> data type on a system
- Relatively straightforward
- Using existing observational data and operational analyses, the candidate data are either added to withheld from the forecast system, and the impact is assessed
- Control run (all operationally used observations)
- Perturbation run (control plus candidate data)
- Compare!

OSSEs

- Observing System Simulation Experiment
 - Typically aimed at assessing the impact of a <u>hypothetical</u> data type on a forecast system
 - Not straightforward; EVERYTHING must be simulated
 - Simulated atmosphere ("nature run")
 - Simulated reference observations (corresponding to existing observations)
 - Simulate perturbation observations
 - (object of study)
 - => Costly in terms of computing and manpower

"Why can't you just use real atmospheric situations and real data?"

- The goal of the OSSE is to test whether a given nonexisting type of data could improve on the initial conditions; how would we do that?
 - "You just simulate these new observations and add them to the assimilation"
- We simulate them based on what?
 - "Well based on the actual atmospheric state!"
- But everything we know about the "actual state" is captured in the analysis using the observations we already have; we cannot add or create information simply by resampling our own imperfect estimate.

Data assimilation

OSE, conceptual model

OSSE, conceptual model

Molniya OSSE

(Observing system simulation experiment) GEOS-4; Atlas et al.

6-hour winds coverage, 4 LEO's ⇒ Apogee winds coverage, Molniya ↓

- Mission already in development under ESSP; slated for 2009 launch
 - "...precise, time-dependent global measurements of atmospheric carbon dioxide (CO2) from an Earth orbiting satellite" (JPL)
- Hyperspectral near-IR instrument; primary science data product is CO₂ column
- Two questions (based on discussions with Steve Pawson, GMAO)
 - Can we do source estimation from OCO? what is the right strategy for assimilation?
 - Can OCO do surface pressure? with what kind of accuracy impact?

Sources: Center for climatic research, Institute for environmental studies, university of Wisconsin at Madison; Okanagan university college in Canada, Department of geography; World Watch, November-December 1998; Climate change 1995, The science of climate change, contribution of working group 1 to the second assessment report of the intergovernmental panel on climate change, UNEP and WMO, Cambridge press university, 1996.

OCO(I)

- Question
 - "What observations do we need and how do we need to assimilate them in order to estimate surface fluxes?"
- Ingredients
 - 1. Transport given by GCM and assumed to be perfect
 - 2. Imposed "best-estimate" fluxes
 - 3. Simulated OCO observations of the scenario given by 1. and 2.
- Using 1., attempt to recover 2. from 3.
 - This can iterated until the question is answered
 - e.g. data selection, density, cloudiness, radiance vs. retrieval

OCO (II)

- Can OCO provide surface pressure observations at an accuracy that would be useful for NWP?
 - A "first" from space; global coverage over land
 - Relatively easy to define and execute OSSE
 - Simulate generic surface pressure observations with pertinent coverage and error characteristics
 - A positive answer would have substantial implications
 - for OCO: algorithm development, processing and dissemination (latency)
 - for the users: new data type, benefits

Extending the OSSE Concept Beyond NWP

NWP not the only area facing important decisions on observing system development

- Constituent OSSEs monitoring and predicting air pollution; monitoring changes in greenhouse gases
- Ocean, land, climate, etc.
 - poster by Wielicki et al.

Conceptual barrier

NWP OSSE methodology is predicated on the existence of a well-defined prediction problem *with a known answer*

-"How does/would sensor X affect the skill in three-day hurricane landfall forecasts over CONUS?"

Summary

- OSSEs are cumbersome and expensive
- BUT
 - Investment still represents a small fraction of overall cost of observing system
 - Can play a useful role at any phase in the development prior to launch
- OSSE methodology for NWP is well-developed (capability currently being redeveloped for GEOS-5 and GSF in collaboration with the Joint Center for Satellite Data Assimilation)
- OSSEs or similar tools needed for other disciplines/observing systems
 - Generalization of NWP-based concept is straightforward in some cases, may be impossible in others